
Approved for public release; further dissemination unlimited

UCRL-MA-150596

Unstructured Mesh
Connectivity in
UnstructuredMapping

K. K. Chand

October 22, 2002

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

 This report has been reproduced directly from the best available copy.

 Available electronically at http://www.doc.gov/bridge

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728

 E-mail: reports@adonis.osti.gov

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900

 E-mail: orders@ntis.fedworld.gov
 Online ordering: http://www.ntis.gov/ordering.htm

 OR

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html

Unstructured Mesh Connectivity in UnstructuredMapping

Kyle K. Chand Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551
chand1@llnl.gov
http://www.llnl.gov/casc/people/chand
http://www.llnl.gov/casc/Overture October 29, 2002

Abstract

The connectivity interface for UnstructuredMapping has been rewritten to provide a more
thorough interface to the mesh. This new design also resembles the TSTT mesh query inter-
face. While data is still stored in array form, indexed by integers, the interface provides itera-
tors through the mesh entities and adjacencies. This document describes the additions to the
UnstructuredMapping class as well as the definition and use of the UnstructuredMappingIterator
and UnstructuredMappingAdjacencyIterator classes.

Contents

1 Introduction 2

2 Additions to the UnstructuredMapping class 4
2.1 Generic size and data access methods . 4
2.2 Iterator related methods . 5
2.3 Entity and connectivity manipulations . 6

3 Iterator Classes 8
3.1 Common methods and operators . 8
3.2 UnstructuredMappingIterator constructor . 8
3.3 UnstructuredMappingAdjacencyIterator constructor 9
3.4 UnstructuredMappingAdjacencyIterator orientation 9

4 The tagging interface 10

1

5 Other useful stuff 13

6 Examples 14
6.1 Iterating through entities of a given type . 14
6.2 Adjacency iterations . 14
6.3 Tag all vertices on the boundary of the mesh . 15
6.4 Computing 2D Face areas . 16
6.5 A generic finite volume gradient operator . 18

1 Introduction

Connectivity in the UnstructuredMapping is based on the set of “entities” specified in UnstructuredMapping

::EntityTypeEnum. “Vertex”, “Edge”, “Face”, and “Region” refer to entities in ascending topo-
logical dimension, with “Vertex” equivalent to 0 and “Region” equivalent to 3:

enum EntityTypeEnum

{

Invalid=-1,

Vertex=0,

Edge,

Face,

Region,

Mesh, // kkc put this here to enable "Mesh" tagging...

NumberOfEntityTypes

};

This approach will be familiar to users of the TSTT mesh query interface. Entities themselves
are defined by their topological dimension (Type) and the specific vertices that they contain. For
example, no two edges have the same vertices. Each entity has an orientation defined by their
vertices and “Element” type as specified in UnstructuredMapping ::ElementTypeEnum:

enum ElementType

{

triangle,

quadrilateral,

2

tetrahedron,

pyramid,

triPrism,

septahedron,

hexahedron,

other,

boundary,

NumberOfElementTypes

};

ElementTypeEnum is analogous to the EntityTopology enum from the TSTT interface and specifies
the “shape” of a given entity (triangle, quad, etc...). Iterating through the entities and their adjacen-
cies is managed most effectively (though not exclusively) through the UnstructuredMappingIterator
and UnstructuredMappingAdjacencyIterator classes. The Iterator classes provide iterations
through entities of a specific type (eg all the Regions) while the AdjacencyIterators provide ac-
cess to the entities adjacent to a specific entities. A tagging mechanism has also been added, again
following the TSTT approach, in order to allow a very general method for placing information on
entities and grouping them together into sets. Several additions to the methods and data in the
UnstructuredMapping class have been created to facilitate the construction and use of the new
connectivity and iterators.

Prior to discussing the details of the interface and changes to the UnstructuredMapping class,
we demonstrate the basic use of the interface with two examples. In the first example we read an
UnstructuredMapping from a file and then iterate through all the “Faces” in the mesh:

UnstructuredMapping umap;

umap.get(fileName);

// loop through all the Faces in the mesh

UnstructuredMappingIterator face;

for (face = umap.begin(UnstructuredMapping::Face);

face!=umap.end(UnstructuredMapping::Face);

face++)

cout<<"Here is a Face with index "<< *face <<endl;

The declaration and get method should be familiar to users of the UnstructuredMapping .
Looping through all the faces in the UnstructuredMapping , however, is performed using the new
UnstructuredMappingIterator iterator class. UnstructuredMappingIterator ’s use mirrors that

3

of STL containers and iterators. UnstructuredMapping ’s begin and end methods require an argu-
ment specifying the type of entity requested (from EntityTypeEnum). The dereference operator
of the iterator returns an integer index which may be used as part of an identification mechanism or
access into another array. In order to obtain adjacency information (such as the vertices attached
to the a specific face) we need to use an UnstructuredMappingAdjacencyIterator :

UnstructuredMappingIterator face;

for (face = umap.begin(UnstructuredMapping::Face);

face != umap.end(UnstructuredMapping::Face);

face++)

{

cout<<"Face "<<*face<<" has vertices : ";

UnstructuredMappingAdjacencyIterator faceVert;

for (faceVert = umap.adjacency_begin(face, UnstructuredMapping::Vertex);

faceVert != umap.adjacency_end(face, UnstructuredMapping::Vertex);

faceVert++)

cout<<*faceVert<<" ";

cout<<endl;

}

The UnstructuredMapping ’s adjacency begin and adjacency end methods are used in the
same fashion as the UnstructuredMappingIterator versions. They require an
UnstructuredMappingIterator as the first argument in order to specify the “from” entity and
a second argument to specify the type of the “to”, or adjacent, entities. Variations on these two
iterations will form the bulk of the examples and are expected to provide the necessary functionality
to build unstructured mesh operators and manipulations.

2 Additions to the UnstructuredMapping class

2.1 Generic size and data access methods

• const intArray & getEntities(EntityTypeEnum);

return an array of the vertices in all the entities of the type requested by the argument

• inline int size(EntityTypeEnum t) const;

returns the number of entities of type t available in the mesh.

4

• inline int capacity(EntityTypeEnum t) const;

return the total storage available for entities of type t.

• int reserve(EntityTypeEnum, int) const;

reserve a specified amount of space (increase/decrease the capacity) for entities of a specified
type

2.2 Iterator related methods

• inline UnstructuredMappingIterator

begin(EntityTypeEnum entityType_, bool includeGhostEntities) const;

returns an iterator pointing to the beginning of the list of entities of type entityType .
includeGhostEntities is an optional argument; if true, the ghost entities in the itera-
tion are skipped, if false (default) they are included. NOTE: if the specified entity does not
exist the mapping will attempt to build it!

• inline UnstructuredMappingIterator

end(EntityTypeEnum entityType_, bool includeGhostEntities) const;

returns an iterator pointing to the end of the list of entities of typeentityType .
includeGhostEntities is an optional argument; if true, the ghost entities in the itera-
tion are skipped, if false (default) they are included. NOTE: if the requested entity does not
exist the mapping will try to build it!

• inline UnstructuredMappingAdjacencyIterator

adjacency_begin(UnstructuredMappingIterator from,

EntityTypeEnum to, bool skipGhostEntities) const;

returns an iterator pointing to the beginning of the list of entities of type to surrounding the
entities specified by the iterator from. skipGhostEntities is an optional argument; if true,
the ghost entities in the iteration are skipped, if false (default) they are included. NOTE: if
the requested adjacency information does not exist then the mapping will attempt to build it.

• inline UnstructuredMappingAdjacencyIterator

adjacency_end(UnstructuredMappingIterator from,

EntityTypeEnum to, bool skipGhostEntities) const;

returns an iterator pointing to the end of the list of entities of type to surrounding the
entities specified by the iterator from. skipGhostEntities is an optional argument; if true,
the ghost entities in the iteration are skipped, if false (default) they are included. NOTE: if
the requested adjacency information does not exist then the mapping will attempt to build it.

5

• inline UnstructuredMappingAdjacencyIterator

adjacency_begin(UnstructuredMappingAdjacencyIterator from,

EntityTypeEnum to, bool skipGhostEntities) const;

returns an iterator pointing to the beginning of the list of entities of type to surrounding the
entities specified by the iterator from. skipGhostEntities is an optional argument; if true,
the ghost entities in the iteration are skipped, if false (default) they are included.

• inline UnstructuredMappingAdjacencyIterator

adjacency_end(UnstructuredMappingAdjacencyIterator from,

EntityTypeEnum to, bool skipGhostEntities) const;

returns an iterator pointing to the end of the list of entities of type to surrounding the entities
specified by the iterator from. skipGhostEntities is an optional argument; if true, the ghost
entities in the iteration are skipped, if false (default) they are included.

2.3 Entity and connectivity manipulations

• inline int maxVerticesInEntity(EntityTypeEnum type);

returns the maximum number of vertices in a given entity type.

• inline ElementType computeElementType(EntityTypeEnum type, int e);

computes the element type as given in the ElementType enum for a type entity with index
e.

• inline int numberOfVertices(EntityTypeEnum, int);

• bool

entitiesAreEquivalent(EntityTypeEnum type, int entity, ArraySimple<int> &verticies);

two entities are equivalent if their vertices are the same. This method returns true if the type
entity with index e is equivalent to an entity specified by vertices.

• void setAsGhost(EntityTypeEnum type, int entity);

toggles the type entity at index entity to be a ghost. This also adds a tag marking the entity
as a ghost through the tagging mechanism. The entity is added to the list of entities with the
same ghost tag.

• bool specifyVertices(const realArray & verts);

provide a list of vertices to be copied into the mapping. This replaces the “node” array from
the old interface. returns true if successful.

6

• bool

buildEntity(EntityTypeEnum type, bool rebuild, bool keepDownward, bool keepUpward);

Build the connectivity data for entities of type type. rebuild is an optional argument that
tells the method to destroy existing connectivity if present; the default is false. keepDownward
and keepUpward are optional arguments that instruct the mapping to keep downward or
upward adjacencies built during the construction of the entities; both are true by default.

• bool specifyEntity(const EntityTypeEnum type, const intArray &entity);

specifiy the entities of a type given by type by providing an array of the vertices in each entity.
The entity array is dimensioned by the number of entities and the maximum number of
vertices in that entity type. Each entity in the array is specified by a list of vertex indices
terminated by a −1 or by the use of all the available vertices for that entity type.

• bool buildConnectivity(EntityTypeEnum from, EntityTypeEnum to, bool rebuild);

build the connectivity (adjacency) information from entities of type from to entities of type
to . The optional argument rebuild forces the mapping to destroy any previous data if set
to true; the default is false.

• bool

specifyConnectivity(const EntityTypeEnum from, const EntityTypeEnum to,

const intArray &index, const char *orientation,

const intArray &offset);

allows the user to specify the adjacencies between from and to entities. The index array
contains a list of to entities for each from entity in compressed form. The beginning of the
list of to entities for each from is specified by the offset array.

• inline bool connectivityExists(EntityTypeEnum from, EntityTypeEnum to) const;

returns true if the adjacency information between from and to has been built already.

• void deleteConnectivity(EntityTypeEnum from, EntityTypeEnum to);

destroys the data associated with the connectivity between from and to entities.

• void deleteConnectivity(EntityTypeEnum type);

destroys ALL the connectivity information relating to entities of type type.

• void deleteConnectivity();

destroys ALL the connectivity information in the mesh.

7

3 Iterator Classes

There are two iterator classes available : UnstructuredMappingIterator , and
UnstructuredMappingAdjacencyIterator . The former provides iteration through the entities
of a particular type and the latter allows the iteration through the entities adjacent to a particular
entity. Both skip holes in the entity data structures (unused locations in the arrays) and both
optionally skip “ghost” entities by providing an argument to the iterator. Comparisons are also
possible between the iterators.

3.1 Common methods and operators

• void operator++(int);

increments the iterator to the next entity.

• int operator *() const {return e;}

returns an unique (amongst the entity type of the iterator) index for the current entity.

• bool operator==(const UnstructuredMappingIterator & iter) const;

• bool

operator==(const UnstructuredMappingAdjacencyIterator & iter) const;

return true if two iterators point to the same entity.

• bool operator!=(const UnstructuredMappingIterator & iter) const

• bool

operator!=(const UnstructuredMappingAdjacencyIterator & iter) const

return true if two iterators point to different entities.

3.2 UnstructuredMappingIterator constructor

The UnstructuredMappingIterator is typically initialized by the use of a UnstructuredMapping

’s begin or end method. While not intended for common use by the user, the constructor for this
class is:

• UnstructuredMappingIterator(const UnstructuredMapping & uns,

UnstructuredMapping::EntityTypeEnum entityType_,

int position, bool includeGhostEntities);

8

The first argument is the UnstructuredMapping containing the data to iterate through. entityType
designates the the type, or topological dimension, of the entities for iteration. The position argu-
ment is 0 if an iterator pointing to the beginning of the list is requested and 1 for the end. Finally,
if includeGhostEntities is true, ghost entities will be skipped during the iteration.

3.3 UnstructuredMappingAdjacencyIterator constructor

As with the UnstructuredMappingIterator , the UnstructuredMappingAdjacencyIterator con-
structor is intended to be used by methods in the UnstructuredMapping class for beginning, ending
and querying iterators:

• UnstructuredMappingAdjacencyIterator(const UnstructuredMapping & uns,

UnstructuredMapping::EntityTypeEnum from,

int adjTo,

UnstructuredMapping::EntityTypeEnum to,

int position, bool skipGhostEntities_ = false);

The first argument is the UnstructuredMapping containing the data to iterate through. from is an
iterator (either a UnstructuredMappingIterator or UnstructuredMappingAdjacencyIterator)
pointing to the entity around which the iteration will take place. The EntityTypeEnum variable
to specifies the desired topological dimension of the adjacent entities. position argument is
0 if an iterator pointing to the beginning of the list is requested and 1 for the end. Finally, if
skipGhostEntities is true, ghost entities will be skipped during the iteration.

3.4 UnstructuredMappingAdjacencyIterator orientation

Each entity is given an orientation when it is constructed by the UnstructuredMapping . For
example, the first vertex index in each edge is always the one with the lowest index value. Each
entity maintains information about the orientation of adjacent (upward or downward adjacencies)
entities relative to its own definition. For example, a “Face” adjacent to two “Regions” will have its
vertices defined counterclockwise when viewed from outside one (the first in the upward adjacency)
of the regions. This is by definition the adjacency with a positive orientation. When viewed relative
to and from outside the second “Region”, the “Face” will have a clockwise, or negative, orientation.
(MAYBE ADD A FIGURE TO DESCRIBE THIS?). In the downward adjacency from the first
region to the face the adjacency is positive (the face is oriented correctly relative the the first region)
and negative to the second (it is reversed relative to the second). In the upward adjacency, the first
“Region” has a positive orientation while the second has negative. The orientation information is
provided in the UnstructuredMappingAdjacencyIterator by the following method:

9

• int orientation() const;

This method returns 1 for positive orientation and -1 for negative. Use of the adjacency orientation
will be demonstrated in the Examples section.

4 The tagging interface

Often it is convenient to tag an entity or group of entities with a piece of data for later use. Common
examples would include tagging boundary condition information on boundary entities and adding
material property information to groups of entities. A new interface has been created to support
these features and consists of the typdefs entity tag iterator , and tag entity iterator and
the following new methods:

• EntityTag &

addTag(const EntityTypeEnum entityType, const int entityIndex,

const std::string tagName,

const void *tagData, const bool copyTag, const int tagSize);

adds a tag onto an entity of type entityType at index entityIndex . The “name” of the
tag, used later for lookups of the tag, is specified by the string tagName. An optional argument
tagData is a void pointer, possibly pointing to user defined data. User defined data can be
managed by the tagging system by forcing deep copies of the tagData by setting copyTag to
true. If copyTag is true and tagData is a pointer to user allocated data, tagSize must
specify the size of the tag instance.

• int

deleteTag(const EntityTypeEnum entityType, const int entityIndex,

const EntityTag &tagToDelete);

deletes the tag associated with an entity of type entityType at index entityIndex and
matching the name of tagToDelete .

• int

deleteTag(const EntityTypeEnum entityType, const int entityIndex,

const std::string tagToDelete);

deletes the tag associated with an entity of type entityType at index entityIndex and
matching the string tagToDelete .

• bool

hasTag(const EntityTypeEnum entityType, const int entityIndex,

10

const std::string tag);

returns true if an entity has a tag with the name tag.

• EntityTag &

getTag(const EntityTypeEnum entityType,

const int entityIndex, const std::string tagName);

returns a reference to the instance of EntityTag associated with a particular entity and tag
name.

• void *

getTagData(const EntityTypeEnum entityType, const int entityIndex,

const std::string tag);

returns a pointer to that data stored by a tag corresponding to a particular name on a given
entity defined by entityType and entityIndex .

• int

setTag(const EntityTypeEnum entityType, const int entityIndex,

const EntityTag & newTag);

copies the data in newTag to the matching tag in the entity defined by entityType and
entityIndex .

• int setTagData(const EntityTypeEnum entityType, const int entityIndex,

const std::string tagName,

const void *data, const bool copyData=false, const int tagSize=0);

sets the data in a tag on the specified entity. User defined data can be managed by the tagging
system by forcing deep copies of the tagData by setting copyTag to true. If copyTag is true
and tagData is a pointer to user allocated data, tagSize must specify the size of the tag
instance.

• void maintainTagToEntityMap(bool v);

if v is true, the mapping creates and maintains the list of entities associated with each tag.
If false, the mapping destroys this information and does not maintain it until reset to true.

• bool maintainsTagToEntityMap() const;

returns true if the mapping maintains the list of entities with associated with each tag;

11

• inline entity_tag_iterator entity_tag_begin(EntityTypeEnum et, int index);

returns an iterator to the beginning of the tags associated with an entity defined by et and
index.

• inline entity_tag_iterator entity_tag_end(EntityTypeEnum et, int index);

returns an iterator to the end of the tags associated with an entity defined by et and index.

• inline tag_entity_iterator tag_entity_begin(std::string tagName);

returns an iterator to the beginning of the entities associated with a tag named tagName.

• inline tag_entity_iterator tag_entity_end(std::string tagName);

returns an iterator to the end of the entities associated with a tag named tagName.

Note that any of these methods may throw an exception of type UnstructuredMapping::TagError
. Dereferencing an entity tag iterator results in a reference to an EntityTag . Dereferencing
a tag entity iterator results in a reference to an instance of UnstructuredMapping::IDTuple
whose straightforward definition is :

struct IDTuple

{

EntityTypeEnum et; int e;

inline IDTuple(EntityTypeEnum et_=Invalid, int e_=-1) : et(et_), e(e_) { }

inline IDTuple(const IDTuple &id) : et(id.et), e(id.e) { }

inline ~IDTuple() {}

inline bool operator< (const IDTuple & id) const

inline bool operator< (const IDTuple & id)

inline bool operator== (const IDTuple & id) const

inline bool operator== (const IDTuple & id)

inline bool operator!= (const IDTuple & id) const

inline bool operator!= (const IDTuple & id)

};

IDTuple’s can be used to provide a shorthand for comparing entities. This class may be merged
into UnstructuredMappingIterator at some later date.

12

5 Other useful stuff

Two new public static class members have been added to UnstructuredMapping :

static aString EntityTypeStrings[];

static aString ElementTypeStrings[];

Each of these arrays store string “names” associated with each EntityTypeEnum (except Invalid
whose value is -1) and ElementType. These are often useful for diagnostic purposes.

A function to provide integrity checking of meshes and the connectivity built by UnstructuredMapping

has been created:

• bool verifyUnstructuredConnectivity(UnstructuredMapping &umap, bool verbose);

performs several tests on the connectivity and geometry in the UnstructuredMapping umap.
If verbose is true the function will output any errors as well as some information collected
during the integrity checks. The function returns true if there were no errors.

verifyUnstructuredConnectivity first checks to make sure the downward and upward ad-
jacencies agree. In other words, it makes sure that each entity is contained in the downward
adjacencies of higher dimensional entities and the upward adjacency of lower dimensional ones.
These tests ensure that adjacency loops are consistent with one another. The second part of the
test is more comprehensive and involves checking the orientations of the adjacencies as well as the
geometric validity of the mesh. Geometric validity means that each “Face” in a 2D mesh has a
positive area computed with the adjacency information and that each “Region” in 3D has a positive
volume. Each “Edge” is also checked for duplicate nodes (zero length edges). During the tests,
the volumes or areas are computed several times using the available adjacencies. Inconsistencies in
the orientations are detected when these volumes are not the same sign or magnitude. The typical
output of this function when the “verbose” option is true looks like:

=== VERIFY CONNECTIVITY REPORT ================================

NUMBER OF ERRORS : 0

NUMBER OF WARNINGS : 0

--- Entity Information --

Vertex Count : 8121

Edge Count : 34712

Face Count : 47248

Region Count : 20571

--- Element Information ---------------------------------------

triangle Count : 34268

13

quadrilateral Count : 12980

tetrahedron Count : 14419

pyramid Count : 2644

triPrism Count : 0

septahedron Count : 0

hexahedron Count : 3508

--- Geometric Information -------------------------------------

Min. Edge : 0.0302402

Max. Edge : 0.245611

Avg. Edge : 0.0889839

Min. Vol : 1.65491e-09

Max. Vol : 0.00461466

Avg. Vol : 0.00017042

===

6 Examples

6.1 Iterating through entities of a given type

Here is an iteration similar to the one in the introduction, except we choose a different entity to
iterate through:

UnstructuredMappingIterator edge;

for (edge = umap.begin(UnstructuredMapping::Edge);

edge != umap.end(UnstructuredMapping::Edge);

edge++)

cout<<"Here is an Edge with index "<<*edge<<endl;

6.2 Adjacency iterations

Upward and downward adjacencies are determined by the arguments to the adjacency begin/end

functions or the constructor to the UnstructuredMappingAdjacencyIterator . The to entity
type is compared to the type of the from iterator for this purpose. Here is a sample downward
iteration of the vertices in an edge:

UnstructuredMappingIterator edge = umap.begin(UnstructuredMapping::Edge);

UnstructuredMappingAdjacencyIterator edgeVert;

for (edgeVert = umap.adjacency_begin(edge, UnstructuredMapping::Vertex);

14

edgeVert != umap.adjacency_end(edge, UnstructuredMapping::Vertex);

edgeVert++)

cout<<"Edge "<<*edge<<" has Vertex "<<*edgeVert<<endl;

We can define an upwards iteration of the regions, for example, surrounding the edge by altering
the second argument of the adjacency begin and end methods:

UnstructuredMappingIterator edge = umap.begin(UnstructuredMapping::Edge);

UnstructuredMappingAdjacencyIterator edgeReg;

for (edgeReg = umap.adjacency_begin(edge, UnstructuredMapping::Region);

edgeReg != umap.adjacency_end(edge, UnstructuredMapping::Region);

edgeReg++)

cout<<"Edge "<<*edge<<" has Region "<<*edgeReg<<endl;

6.3 Tag all vertices on the boundary of the mesh

This example shows how to use EntityTypeEnum ’s in a general way to write generic algorithms.
This example marks all the vertices that live on the boundary of the mesh with a tag called
“boundary vertex”.

// determine the highest dimensional entity that bounds the mesh

UnstructuredMapping::EntityTypeEnum cellBdyType = umap.getRangeDimension()==2 ?

UnstructuredMapping::Edge : UnstructuredMapping::Face;

// the next higher entity we will all the ‘‘cell’’

UnstructuredMapping::EntityTypeEnum cellType = ((int)cellBdyType) + 1;

UnstructuredMappingIterator e_iter;

UnstructuredMappingAdjacencyIterator cellIter, vertIter;

// iterate through the bounding entities and determine if they are on the boundary

for (e_iter=umap.begin(cellBdyType); e_iter!=umap.end(cellBdyType); e_iter++)

{

// an e_iter is on the boundary if it only has one neighboring cell

int nAdj=0;

for (cellIter=umap.adjacency_begin(e_iter, cellType);

cellIter!=umap.adjacency_end(e_iter, cellType); cellIter++)

nAdj++;

15

if (nAdj==1)

{

// we are on a boundary, tag the vertices as such

for (vertIter=umap.adjacency_begin(e_iter, UnstructuredMapping::Vertex);

vertIter!=umap.adjacency_end(e_iter, UnstructuredMapping::Vertex);

vertIter++)

if (!umap.has_tag(UnstructuredMapping::Vertex,

*vertIter, "boundary vertex"))

umap.addTag(UnstructuredMapping::Vertex, *vertIter,

"boundary vertex", ((void *)*vertIter));

}

}

The first step determines the highest dimensional bounding entity of the mesh, in 2D this is an
Edge, in 3D this is a Face. We then compute the “cell” type, which is the first upward adjacency
of the bounding entity (Face in 2D, Region in 3D). We loop through each of the entities of the type
that bound the mesh and determine whether they sit on the boundary. If an entity does sit on the
boundary, each of its vertices are tagged with a tag named “boundary vertex”. The data we store
in the tag is just the index of the vertex associated with the tag.

6.4 Computing 2D Face areas

Here is one way to compute the areas of faces in a 2D mesh. Note that this method will also work
for arbitrary polygonal faces and could be optimized for tets and quads if necessary:

UnstructuredMapping umap; // get this from somewhere

UnstructuredMappingIterator edge;

UnstructuredMappingAdjacencyIterator edgeVert, edgeCell;

ArraySimple< ArraySimpleFixed<real,3,1,1,1> >

cellCenters(umap.size(UnstructuredMapping::Face));

// compute the cell centers with another loop ...

realArray cellAreas(umap.size(UnstructuredMapping::Face));

cellAreas = 0;

// loop through all the edges in the mesh and compute the ‘‘side’’ area’s

16

// side areas are computed from the edge and the cell centeres. These areas

// are then added to the corresponding Face.

for (edge = umap.begin(UnstructuredMapping::Edge);

edge != umap.end(UnstructuredMapping::Edge);

edge++)

{

ArraySimpleFixed<real,2,1,1,1> edgeVertices[2];

// in 2D we connect the cell (face) center to

// the center of the edge to form the area normals

ArraySimpleFixed<real,2,1,1,1> edgeVertices[2], edgeCenter;

int v=0;

// get the vertices for the edge

for (edgeVert = umap.adjacency_begin(edge,UnstructuredMapping::Vertex);

edgeVert != umap.adjacency_end(edge,UnstructuredMapping::Vertex);

edgeVert++)

{ // we could optimize this loop by getting the edge entities directly

for (int a=0; a<rDim; a++)

edgeVertices[v][a] = vertices(*edgeVert,a);

}

// loop through the adjacent Face’s and compute each side area,

// adding each area to each Face as we go along

for (edgeCell = umap.adjacency_begin(edge, UnstructuredMapping::Face);

edgeCell != umap.adjacency_end(edge, UnstructuredMapping::Face);

edgeCell++)

{

// compute the area of the ‘‘side’’

real area = edgeCell.orientation()*triangleArea2D(edgeVertices[0],

edgeVertices[1], cellCenters[*edgeCell]);

// add the area to the cell;

cellAreas(*edgeCell) += area;

}

}

17

6.5 A generic finite volume gradient operator

In this example we construct a generic discrete gradient operator using the finite volume method.
We can approximate the gradient of a function u using finite volumes in the usual way with the
identity: ∫

Ω
∇udΩ =

∫
∂Ω

unds (1)

Where Ω is some domain bounded by ∂Ω with an area normal given by nds. If we replace ∇u by
its average , denoted (∇u)Ω we get the following familiar approximation:

(∇u)Ω ≈
1

Ω

∫
∂Ω

unds (2)

There are, of course, a variety of ways to compute this approximation depending on the centering
of u on the mesh (Face, Vertex, Edge, etc) and the desired centering of the resulting gradient.
If we assume that Ω is represented by polygons in 2D and polyhedra in 3D we can compute the
approximation by summing the value of unds on the boundary of a polygon or polyhedra using nds
computed from the straight line segments (2D) or polygonal surfaces (3D) bounding Ω :

(∇u)Ω ≈
1

Ω

m∑
b=1

ub(nds)b (3)

where the subscript b denotes a facet of the boundary of the polygon or polyhedron. An approx-
imation for ub is still needed. In some instances, this value may exist at the same centering for u
and can be computed by averaging the values on either side of each facet. In other cases, such as a
staggered grid, u may exist at a centering with a different adjacency to the gradient (u could exist
on the Vertices while ∇u lives on Faces or Regions). In either case, we compute ub by averaging
values adjacent to the facets of Ω :

(∇u)Ω ≈
1

Ω

m∑
b=1

(
1

n

n∑
c=1

ub
c)(nds)b (4)

where ub
c are the values of u adjacent to facet b.

First we compute the volumes and surface normals required. By noting that each surface is
adjacent to two regions, Ω1 and Ω2, we can loop through the surfaces computing the value of ub

and adding the result of ub(nds)b to Ω1 and subtracting it from Ω2 (subtract since the area normal
relative to Ω2 points in the opposite direction to Ω1. The resulting algorithm looks like:

1. Compute the volumes, Ω, of the polygons or polyhedra at the desired centering for (∇u)Ω

18

2. Compute the area normals, nds, of the facets at the centering corresponding to the boundary
of each Ω

3. For each surface surf:

(a) numberAdjacent = 0

(b) ub = 0

(c) For each u, (denoted by u cell), adjacent to surf

i. ub+ = usurf
u cell

ii. numberAdjacent + +

(d) ub/ = numberAdjacent

(e) uΩ1+ = 1
Ω1

ub(nds)surf

(f) uΩ2− = 1
Ω2

ub(nds)surf

The code for this algorithm using the new UnstructuredMapping iterator interface is given in the
function computeGradient. centering refers to the centering of the function u; surfaceCentering
the centering of the surface normals; and gradientCentering refers to the centering of gradu .

19

void computeGradient(UnstructuredMapping &umap,

UnstructuredMapping::EntityTypeEnum centering,

UnstructuredMapping::EntityTypeEnum surfaceCentering,

UnstructuredMapping::EntityTypeEnum gradientCentering,

realArray &u, realArray &surfaceNormals, realArray &volumes,

realArray &gradu)

{

UnstructuredMappingIterator surf;

UnstructuredMappingAdjacencyIterator u_cell, g_cell;

gradu.redim(umap.size(centering), umap.getRangeDimension());

gradu = 0;

for (surf = umap.begin(surfaceCentering);

surf != umap.end(surfaceCentering);

surf++)

{

int nC=0;

real uOnSurf=0;

for (u_cell = umap.adjacency_begin(surf, centering);

u_cell != umap.adjacency_end(surf, centering);

u_cell++)

{

uOnSurf += u(*u_cell);

nC++;

}

uOnSurf /= real(nC);

for (g_cell = umap.adjacency_begin(surf, gradientCentering);

g_cell != umap.adjacency_end(surf, gradientCentering);

g_cell++)

for (int a=0; a<umap.getRangeDimension(); a++)

gradu(*g_cell,a) +=

g_cell.orientation()*surfaceNormals(*surf,a)*uOnSurf/volumes(*g_cell);

}

}

20

This function can be used to compute Vertex centered gradients using Vertex centered values
for u by calling:

computeGradient(umap,

UnstructuredMapping::Vertex, UnstructuredMapping::Edge,

UnstructuredMapping::Vertex,

vertexCenteredScalar, edgeAreaNormals, vertexVolumes,

vertexCenteredGradient);

It can also be used to compute “cell” (Face or Region) centered gradients using:

computeGradient(umap,

cellType, UnstructuredMapping::EntityTypeEnum(((int)cellType)-1),

cellType,

cellCenteredScalar, cellSurfNormals, cellVolumes,

cellCenteredGradient);

Yet another example places u at the vertices but computes (∇u)Ω at Face or Region (Cell) centers:

computeGradient(umap,

UnstructuredMapping::Vertex, UnstructuredMapping::EntityTypeEnum(((int)cellType)-1),

cellType,

vertexCenteredScalar, cellSurfNormals, cellVolumes,

cellCenteredGradientFromNodeU);

21

